The cause of ischemic stroke remains unclear, or cryptogenic, in as many as 35% of patients with stroke. Not knowing the cause of stroke restricts optimal implementation of prevention therapy and limits stroke research. We demonstrate how gene expression profiles in blood can be used in conjunction with a measure of infarct location on neuroimaging to predict a probable cause in cryptogenic stroke.
Methods—The cause of cryptogenic stroke was predicted using previously described profiles of differentially expressed genes characteristic of patients with cardioembolic, arterial, and lacunar stroke. RNA was isolated from peripheral blood of 131 cryptogenic strokes and compared with profiles derived from 149 strokes of known cause. Each sample was run on Affymetrix U133 Plus 2.0 microarrays. Cause of cryptogenic stroke was predicted using gene expression in blood and infarct location.
Results—Cryptogenic strokes were predicted to be 58% cardioembolic, 18% arterial, 12% lacunar, and 12% unclear etiology. Cryptogenic stroke of predicted cardioembolic etiology had more prior myocardial infarction and higher CHA2DS2-VASc scores compared with stroke of predicted arterial etiology. Predicted lacunar strokes had higher systolic and diastolic blood pressures and lower National Institutes of Health Stroke Scale compared with predicted arterial and cardioembolic strokes. Cryptogenic strokes of unclear predicted etiology were less likely to have a prior transient ischemic attack or ischemic stroke.
Conclusions—Gene expression in conjunction with a measure of infarct location can predict a probable cause in cryptogenic strokes. Predicted groups require further evaluation to determine whether relevant clinical, imaging, or therapeutic differences exist for each group.
No comments:
Post a Comment