Christopher P Gallati, Howard J Silberstein, Steven P Meyers
Surgical Neurology International 2012 3(1):166-166
Background: Cavernous malformations (CMs) are the second most common intracranial vascular lesions. They typically present after hemorrhage or as incidental findings. Several risk factors have been identified for hemorrhage, however, electrocution as a cause has not been described. We performed a literature review of electrocution associated with CM hemorrhage and of the mechanisms of pathological injury in the central nervous system (CNS) secondary to electrocution. We found no cases of hemorrhage of CMs associated with electrocution. Case Description: A 19-year-old male electrician was accidentally electrocuted with 277 V of alternating current (AC) at a job site. He suffered no trauma or physical injuries and reported no immediate abnormal findings. He then experienced progressive nausea, emesis, and lethargy until he presented to the emergency department (ED) where it was discovered that he had a left thalamic/midbrain hemorrhage with hydrocephalus. His hydrocephalus was treated and he began to improve. Subsequent magnetic resonance imaging (MRI) of his head demonstrated characteristic features of a CM. Conclusions: There are several proposed mechanisms in the literature by which electrocution may cause CNS damage. It is conceivable that given the pathology of CMs and the proposed mechanisms of electrical injury, these lesions may have an increased risk of hemorrhage as result of electrocution and we are reporting the first case of such an association.
Surgical Neurology International 2012 3(1):166-166
Background: Cavernous malformations (CMs) are the second most common intracranial vascular lesions. They typically present after hemorrhage or as incidental findings. Several risk factors have been identified for hemorrhage, however, electrocution as a cause has not been described. We performed a literature review of electrocution associated with CM hemorrhage and of the mechanisms of pathological injury in the central nervous system (CNS) secondary to electrocution. We found no cases of hemorrhage of CMs associated with electrocution. Case Description: A 19-year-old male electrician was accidentally electrocuted with 277 V of alternating current (AC) at a job site. He suffered no trauma or physical injuries and reported no immediate abnormal findings. He then experienced progressive nausea, emesis, and lethargy until he presented to the emergency department (ED) where it was discovered that he had a left thalamic/midbrain hemorrhage with hydrocephalus. His hydrocephalus was treated and he began to improve. Subsequent magnetic resonance imaging (MRI) of his head demonstrated characteristic features of a CM. Conclusions: There are several proposed mechanisms in the literature by which electrocution may cause CNS damage. It is conceivable that given the pathology of CMs and the proposed mechanisms of electrical injury, these lesions may have an increased risk of hemorrhage as result of electrocution and we are reporting the first case of such an association.
Sent with MobileRSS for iPhone
No comments:
Post a Comment